Propagation of Singularities and Nontrapping Estimates

نویسنده

  • SEMYON DYATLOV
چکیده

In this expository note, we prove the semiclassical propagation of singularities estimate in the presence of complex absorbtion, using the positive commutator method of Hörmander. As an application, we show a nontrapping estimate for one-dimensional semiclassical potential scattering using the method of complex scaling. We also explain how nontrapping estimates in certain other situations (such as a nontrapping obstacle in R) lead to exponential decay for solutions of the wave equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Strichartz Estimates for Nontrapping Perturbations of the Laplacian

The purpose of this paper is to establish estimates of Strichartz type, globally in space and time, for solutions to certain nontrapping, spatially compact perturbations of the Minkowski wave equation. Precisely, we consider the following wave equation on the exterior domain Ω to a compact obstacle, where the spatial dimension is an odd integer n ≥ 3.    ∂ t u(t, x)−∆gu(t, x) ...

متن کامل

Propagation of singularities for the wave equation on manifolds with corners

In this paper we describe the propagation of C∞ and Sobolev singularities for the wave equation on C∞ manifolds with corners M equipped with a Riemannian metric g. That is, for X = M × Rt, P = D t − ∆M , and u ∈ H loc (X) solving Pu = 0 with homogeneous Dirichlet or Neumann boundary conditions, we show that WFb(u) is a union of maximally extended generalized broken bicharacteristics. This resul...

متن کامل

Singularities of Solutions to the Schrödinger Equation on Scattering Manifold

In this paper we study microlocal singularities of solutions to Schrödinger equations on scattering manifolds, i.e., noncompact Riemannian manifolds with asymptotically conic ends. We characterize the wave front set of the solutions in terms of the initial condition and the classical scattering maps under the nontrapping condition. Our result is closely related to a recent work by Hassell and W...

متن کامل

Infinite product representation of solution of indefinite SturmLiouville problem

In this paper, we investigate infinite product representation of the solution of a Sturm- Liouville equation with an indefinite weight function which has two zeros and/or singularities in a finite interval. First, by using of the asymptotic estimates provided in [W. Eberhard, G. Freiling, K. Wilcken-Stoeber, Indefinite eigenvalue problems with several singular points and turning points, Math. N...

متن کامل

Singularities of solutions to Schrödinger equation on scattering manifold

In this paper we study microlocal singularities of solutions to Schrödinger equations on scattering manifolds, i.e., noncompact Riemannian manifolds with asymptotically conic ends. We characterize the wave front set of the solutions in terms of the initial condition and the classical scattering maps under the nontrapping condition. Our result is closely related to a recent work by Hassell and W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011